Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network.
نویسندگان
چکیده
This study was carried out to develop a novel method for predicting the skin permeability coefficient (log K(p)) of compounds from their three-dimensional molecular structure using a combination of molecular orbital (MO) calculation and artificial neural network. Human skin permeability data on 92 structurally diverse compounds were analyzed. The molecular descriptors of each compound, such as the dipole moment, polarizability, sum of charges of nitrogen and oxygen atoms (sum(N,O)), and sum of charges of hydrogen atoms bonding to nitrogen or oxygen atoms (sum(H)) were obtained from MO calculations. The correlation between these molecular descriptors and log K(p) was examined using feed-forward back-propagation neural networks. To improve the generalization capability of a neural network, the network was trained with input patterns given 5% random noise. The neural network model with a configuration of 4-4-1 for input, hidden, and output layers was much superior to the conventional multiple linear regression model in terms of root mean square (RMS) errors (0.528 vs. 0.930). A "leave-one-out" cross-validation revealed that the neural network model could predict skin permeability with a reasonable accuracy (predictive RMS error of 0.669).
منابع مشابه
Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks
Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملInvestigation of Possibility of Suspended Sediment Prediction Using a Combination of Sediment Rating Curve and Artificial Neural Network Case Study: Ghatorchai River, Yazdakan Bridge
Estimation of sediment loads in rivers is one of the most important, difficult components of sediment transport studies and river engineering. Accessing new methods that can be effective in this background are more important. In this research, we have used the artificial neural network (ANN) to optimize the results of the sediment rating curve (SRC) to predict the suspended sediment loads. For ...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملEnhancing Efficiency of Neural Network Model in Prediction of Firms Financial Crisis Using Input Space Dimension Reduction Techniques
The main focus in this study is on data pre-processing, reduction in number of inputs or input space size reduction the purpose of which is the justified generalization of data set in smaller dimensions without losing the most significant data. In case the input space is large, the most important input variables can be identified from which insignificant variables are eliminated, or a variable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2002